F(x)=-2x^2+3x+(3(8/4))

Simple and best practice solution for F(x)=-2x^2+3x+(3(8/4)) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for F(x)=-2x^2+3x+(3(8/4)) equation:



(F)=-2F^2+3F+(3(8/4))
We move all terms to the left:
(F)-(-2F^2+3F+(3(8/4)))=0
We add all the numbers together, and all the variables
-(-2F^2+3F+(32))+F=0
We add all the numbers together, and all the variables
-(-2F^2+3F+32)+F=0
We get rid of parentheses
2F^2-3F+F-32=0
We add all the numbers together, and all the variables
2F^2-2F-32=0
a = 2; b = -2; c = -32;
Δ = b2-4ac
Δ = -22-4·2·(-32)
Δ = 260
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{260}=\sqrt{4*65}=\sqrt{4}*\sqrt{65}=2\sqrt{65}$
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{65}}{2*2}=\frac{2-2\sqrt{65}}{4} $
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{65}}{2*2}=\frac{2+2\sqrt{65}}{4} $

See similar equations:

| Y=6.5y^2-8 | | F(x)=-2x^2+3x+38/4 | | x+0.7=-3.0 | | q=6q-3 | | 5y+9=31 | | 168=6(8-5k) | | 900000=2x+3x+3x | | 2.x-12=38 | | 360=216+10x | | (4x-3)=2x+7 | | 2(w–4)=13 | | -x+14=-5x-2 | | -2(3m+6m)=36 | | 8x-4,6=3,4 | | 4x-3=2×+€ | | 26+x=138^2 | | -8x+18=-4x+42 | | 3x-6(5x-2)=12 | | 18t-4t=5t | | 3x^2+15-21=0 | | -x+20=3(x+4) | | 2x+27=-2x-9 | | 5/2×x=1 | | 7.17-4x=1 | | 14/35=n/5 | | 2=k/16 | | 6x3=-8 | | -2x+15=31 | | 2q÷10=1 | | (10x=4)/7=8 | | 2(x+5)+7=5x+47 | | 2x+11=7x-39 |

Equations solver categories